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The Cohomology of the Groups of Order 32 

By David J. Rusin 

Abstract. We have calculated the mod-2 cohomology rings of all the groups of 32 ele- 
ments. This paper describes the methods of calculation; the computer routines used can 
be adapted to assist in the calculation of the modular cohomology rings of other finite 
groups. We also describe the results of the calculations; the data we have collected pro- 
vide a substantial increase in the supply of completed calculations in group cohomology, 
and so we take this opportunity to compare known results and open conjectures. 

This project may be viewed as the penance done for a youthful boast: that one 
can always calculate the (mod-2) cohomology of any single (finite 2-) group if one 
is patient enough. We report here the results of the computations for the 51 groups 
of order 32. 

For general background material on group cohomology, one may consult [8]. 
It should be remarked that the definition of H' (G, F2) lends itself to an easy if 
inefficient algorithm to compute this abelian group; but it is hopeless to compute 
the entire ring H* (G) = $,3 H' (G, F2) in this way. By various techniques, the 
cohomology rings of the groups of order at most 16 have been determined (see the 
last colunm of the tables in Section 3), but these groups exhibit little of the variety 
observed in the groups of order 32. 

Roughly half of the text of this paper (Section 1) is devoted to the techniques 
of computation. We describe the algorithms used in generality that may suffice 
to compute the cohomology of larger groups. Most of the computations were, in 
fact, done originally by hand, but the strain on our patience was greatly relieved 
with the introduction of Stillman and Bayer's computer program Macaulay, which 
can compute syzygies over polynomial rings; many computational problems can be 
reduced to this one. 

In Section 2 we describe the results of these computations. We have commented 
on several conjectures and areas of research for which this new crop of data has 
proven helpful. 

Finally, in a long appendix (Section 3) we provide the complete data for our 
groups. 

1. Description of the Algorithms. The computations break naturally into 
several stages. 

(1.1) Identification of the Groups. The groups of order 32 (and 64) are classified 
in [7]. The abelian groups are listed by their invariants in ascending order (e.g., 
"(2)(3)" for Z4 X Z8). Each nonabelian group carries a name such as 32r7a3 which 
identifies it as a member (a3) of order 32 in a certain family (I7). The eight families 
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of groups of order 32 are distinguished by their central quotients G = G/Z(G) 
(where Z(G) and ZG denote the center of G); these quotients are 

11 Z21 D8, iZ3 Z41 D8 X Z2 , 16r2C1, D16 

respectively for r1,r2,... ,r8 (D,, is the dihedral group of order n). 
Thus, for each G we have an exact sequence 

(*) ~~~1 -+Z(G) 
1 G 7rG/Z(G) 

with well-understood ends. The three groups in (*) are presented in [7] with gen- 
erators and relations in a way that makes the maps i and ir clear. 

We remark that, in general, the subdivision of these groups into families is only 
a fair predictor of the structure of the cohomology rings. 

(1.2) Selection of Spectral Sequence. We choose to approximate H*(G) using 
the Eilenberg-Moore spectral sequence (EMSS) of the extension (*), as was done 
in [12] (see that paper for more details on the technique). In particular, we do not 
use the Serre spectral sequence: it converges more slowly, it leaves undecided some 
higher differentials, and it requires the use of different rings Er at each stage of the 
computation. By contrast, we observe the EMSS collapses at E2 for almost every 
group. 

We also observe that for most groups G there are other central extensions than 
(*) to which the EMSS may be applied. For a specific G it is probably better to 
mod out by a smaller central subgroup, since then some structure of H* (G) can be 
inflated from H* (G). The disadvantage is that the E2 term will be correspondingly 
more complex. Moreover, since we are computing the cohomology of many groups, 
we find it convenient to minimize the number of quotients G to consider. 

The EMSS begins with the term 

E2 = TorH*(K(ZG,2),F2) (H* (G/ZG), F2), 

where K(ZG, 2) is an Eilenberg-MacLane space associated to the center ZG of 
the group G (see [12]). It is straightforward to compute this ring, once certain 
pieces of data are given. If, for example, Z(G) = Z2, then the base ring R = 
H*(K(ZG, 2), F2) is a polynomial ring F2[to, t1, t2, ...] in infinitely many variables, 
with tn = Sq, (tn-1). The structure of H* (G) as a module over this is determined 
by the map f: BG -- K(ZG,2) implicit in (*): f*(to) E H2(G) is the extension 
cocycle, f*(tl) = Sql (f*(to)), f*(t2) = Sq2 (f*(tl)), and so on. 

If ZG is cyclic of larger order, the same remarks apply except that t, # Sql (to). 
If ZG = A1 x A2 is noncyclic, we note 

H*(K(ZG, 2), F2) = H*(K(A1, 2)) 0 H*(K(A2, 2)) 

is again a polynomial ring, and the algebra structure is again determined by the 
various f* (t(j)). We make concrete these remarks in several steps. 

(1.3) Calculation of Extension Cocycles. We need to know the fundamental 
classes qj = f* (t(j)) E H2 (G), and for cyclic factors of ZG of order greater than 2, 
the classes /33 = f*(t(j)) E H3(G). 
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LEMMA A. (1) If Z(G) = C1 x C2 x ... with Cj cyclic, let Nj = Hl,+Ci. 
Then the fundamental classes qj and /j are the extension cocycles of 

1 - ZG/N3 --G/N3 - G -- 1 

in H2 (G) and H3 (G), respectively. 
(2) If ZG is cyclic and I?(ZG) its Frattini subgroup, then q E H2(G) is also the 

extension cocycle of the extension 

1 -k ZG/I?(ZG) -k G/I?(ZG) -k G -k 1. 

(3) If ZG is cyclic and ZG < H < G, then the fundamental classes q' E 
H2(H/ZG) and 3' E H3(H/ZG) of the extension 

1 -- Z(G) H -- H/Z(G) -- 1 

are the restrictions of q, /3 E H* (G). 

The proofs amount to a diagram chase. Part (3) is actually quite useful: there 
are often one or more subgroups H < G for which q' and /3' are easily determined; 
together they may pin down q and /3 unambiguously. This happens if the kernels of 
the restriction maps ResG1zo meet H2 (G) or H3 (G) only in (0); we then say these 
H detect H2(C) or H3(G). We will rely frequently on detection in this paper. 

LEMMA B. (1) If G = G/Z(G) for any group G in families ri,... ,r6 or r8, 

then H*(G) is detected by the elementary (-abelian) subgroups of G. If G E r7, this 
is true of H2 (C) only. 

(2) If G is elementary-abelian, then for n < 3, Hn (G) is detected by the subgroups 
of order 4. 

The proof is a direct calculation. 
If G is a group of 32 in family r7, ZG is of order 2. Thus Lemmas A and B 

imply that for any group G of order 32 the fundamental classes we need are all 
determined by their restrictions to elementary-abelian subgroups of G of order 4. 
By Lemma A(1) these, in turn, are the fundamental classes of extensions in which 
the central subgroup is cyclic and the quotient is Z27. Thus, we are now down to 
calculating the following fundamental classes: 

LEMMA C. Let 

1 -) Zn -) H L Z2 _ 1 

be a central extension, with Zn any cyclic group. Let the fundamental invariants be 
q, / E H*(Z2). Write H for H/Zn 

(1) If H is quaternion (of order 8), then q = x2 + y2 + xy and / = xy(x + y), 
where x and y are any generators of H1(Z2). 

(2) If H is dihedral (of order 8), let x, y E H1 (H) = Hom(H, F2) have noncyclic 
kernels. Then q = xy and /3 = xy(x + y). 

(3) If H otherwise has a cyclic subgroup M of index 2, let x E H1 (H) have 
kernel M. Then q = x2. If H is abelian, /3 = 0; and if not, /3 = xy(x + y) where 
y E H1(H) is linearly independent of x. 
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(4) In the remaining cases, q = 0. If H is abelian, / = 0 too; if not, / = 

xy(x + y), where x and y generate H'(H). 

Thus, armed with the restriction maps, we compute the qj and /3 for all our 
extensions. 

(1.4) The E1 Term. We construct the higher invariants from the preceding ones: 
f*(t(j)) = Sqi(f*(t(j)1)), where Sql: H*(G) H*(G) may be calculated easily. 
If 

Sq: H*(G) H* (G) [T] 

is the total squaring operation, Sq = Sqo + TSqi + T2Sq2 ... ,then Sq is a ring 
homomorphism and so is determined by its action on generators; this is all known 
for our 8 groups G. We can then compute 

Sql(x) = dT(Sq(x))|T=O 

in Macaulay, and so calculate all f* (tni)). 
As H* (G) is Noetherian, these all lie in a finitely generated ideal, and so for n 

sufficiently large we can express these invariants as H* (G)-linear combinations of 
the preceding ones. 

Now, H* (K(ZG, 2)) is a polynomial ring in the tni) so a projective resolution 
of the trivial module F2 is the bigraded ring 

Eo = H* (K(ZG, 2)) 0 Exterior({u(j): n > 0}) 

with differential do: Eo -+ Eo a derivation determined by d(u(j)) = t(j). We tensor 
to get our complex 

El = H* (G) 0 Exterior({u(j) }) 

with dl: E1 -k E1 also a derivation, and d(unij)) - f*(t(i)). 
We need to make, this a finite problem. Using the Noetherian property above, we 

may alter u(j) (with n large) by some linear combination of the u(j) (with m < n) 
to get elements u(i) for which we still have 

El = H* (G) 0 Exterior({u(i) }), 

but now we have iu(j) E Ker(d) for n large. These uj(j) then lie in E2-,* and hence 
survive to Eoo and represent elements of H*(G). (In fact, if ii4j) represents some 

Tj E H*(G), then Tj2 will be represented by u(i4 + lower-order terms.) Thus, 
the E1 term is a finitely generated exterior algebra (hence module) over a ring 
extension H* (G) [T1, T2, ... ,Tr] (where r is the rank of ZG). 

(1.5) The E2 Term. This is simply the homology of the preceding complex, and 
so is an easy task for Macaulay to handle. We incorporate the discussion of (1.4) 
above and simply take Eo as a resolution over a finitely generated polynomial ring 
in place of H* (K(ZG, 2)). The program expresses E2 as a finitely presented module 
over the ring H* (G) [T1,... X Tr]. The relations it provides then approximate some of 
the relations used to describe H* (G). We will later need to solve the multiplicative 
extension problem and to calculate products of these module generators. 

(1.6) The Eo, Term. Fortunately, we almost always have collapse. The E2 
terms tend to be generated, as a module over H*(G)[Ti,... Tr], by classes in 
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E1',*. These classes of course live to Eoo, and so all of E2 does. In two cases, r2f 
and r4d, we need to observe E2 is generated as an algebra by E1,;,*, but the same 
remarks apply. 

There remain two cases without obvious collapse, r7a1 and r7a3, and in both 
cases we do indeed have E2 :A E3 (although E3 = Eoo for the same reasons as 
above). The group r7a3 was described in [13]; it is easy to recover the differential 
d2: E2 -k E2 from there. 

Here, briefly, is the argument for r7a1. We assume a knowledge of Stiefel- 
Whitney classes (see the appendix of [1]). One constructs (by inducing) a rep- 
resentation p: G -k 04(R) whose Stiefel-Whitney class w4(p) E H4(G) restricts 
nontrivially to Z(G) Z2. Consequently, the Serre spectral sequence collapses at 
E4, and we see w4(p) injects HI(G) into Hn+4(G). In particular, since there is a 
certain x E H1 (G) with a large annihilator, there must be a class w4 (p) x E H5 (G) 
with the same annihilator. Short arguments convince us W4 (p) x is represented 
by a certain [a] E E-1'6. Now, ann(x) includes a certain E E H4(G) inflated from 
G/Z(G); thus [fi] E E0O4 should annihilate [a], and so [a] [f] = E E ;,1'10. Since 
[a] .[] - 0 in E2, there must be a differential onto [a][f]. The only possibility is 

2,11 11 a certain map d2: E2 --+ E- 
It is perhaps not necessary to stress that this reasoning is sufficient but not 

encouraging: one now knows to expect E2 54 Eoo without any confidence that one 
can compute higher differentials in general. 

At this point we have a graded version of H* (G) and we turn to the extension 
problems. We need to identify generators of H*(G) to accomplish this. 

(1.7) Polynomial Ring Generators. We observed earlier that H*(G) can be 
viewed as a finite module over a pure polynomial extension H* (C) [Ti,. . , Tr] of 
H*(G/ZG). There is some freedom in the choice of the Ti: they need only restrict 
nontrivially in the (trivial) spectral sequence of 

1 -- Z(G) -- Z(G) -- 1 -+1. 

It is easy to argue that, except for r7a1 as noted in (1.6), we need only insure 

Ti restricts nontrivially in H*(ZG) itself. Two common techniques are to take 
the Ti to be norms or Stiefel-Whitney classes. We observed no case in which the 
former succeeded but not the latter (although this is no longer true for groups of 
larger order). Indeed, in every case but one (r3d2), there were in fact sufficient 
representations to create all the classes Ti. One need only find a maximal subgroup 
H < G and a representation po: H -k On/2(R) of half the desired degree of Ti such 
that po restricts appropriately to Z(G) C H; then let p = IndG (pO). (Typically H 
is cyclic, dihedral, quaternion, or a product of these.) 

The exceptional case r3d2 is metacyclic and so has been discussed in [12]. Should 
it be necessary to consider other examples of groups without sufficient representa- 
tions, it will probably be better to use the method of (1.9). 

(1.8) Module Generators. From the EMSS we conclude H*(G) is a module over 
H* (G) [Ti, . . , Tr] on finitely many classes ai E E Eo . We can identify most of these 
as transfers in the following way. 

Suppose L E E? 1 annihilates one of these a. View L E H1 (G) = Hom(G, F2) 
and let M =Ker(L) (M is maximal in G). Macaulay has a feature which makes 



364 DAVID J. RUSIN 

it possible to find the Poincare series of H* (G). Since the series of H* (M) is also 
known, we can compute the series of ann(L) c H* (G) using the discussion in [14]. 
We can also compute the annihilator of L in Eoo and its Poincare series. If the two 
are equal, we conclude that given any # E Eoo with L * # = 0 E Ew , there exists a 
b E H* (G) represented by d such that L * b = 0 E H* (G). Hence by [14] again, this 
b is a corestriction. In this way we can describe some module generators of H* (G) 
unambiguously as ai = CorG (a,) for certain ai E H* (M). 

There are some exceptions to this pattern. In some cases, of course, there are 
no ai, that is, H* (G) is already generated by the image E? * of H* (G) and the T . 
For some groups (r2b, r2ej, r2e2, r2f, r2g,r3b) there is an a E E2"1,2 which we 
can show is not a transfer; but this represents an element of H' (G) = Hom(G, F2) 
and so is well understood. In several cases (r2h, r3c2, r3e, r4c1, r6a2) we obtain 
generators of H* (G) as transfers but only by using more than one subgroup. The 
group r7aj, discussed above, has a module generator which cannot be a transfer, 
but it has already been described (as W4(p) in (1.6)). 

The group r7a3 leads to an EOc term in which each ai is annihilated by a certain 
L E E0'. However, we discover one a E H3(G) is not a transfer. In this case, 
we choose to describe this element by giving its restrictions to maximal subgroups. 
This technique is actually inappropriate to this group, since there is a nonzero 
ideal (generated by a single 0 E H3(G)) of elements which restrict to zero on all 
subgroups. Thus, our a is not specified uniquely by this procedure. Fortunately, 
the relations we provide for H* (G) in Section 3 are not affected by the choice of a. 

Finally, in the two cases F4c3 and r4d we encounter generators ai E E Oo which 
have no 1-dimensional annihilators in EO, let alone in H*(G). For these groups 
we succeeded only by the method of this next subsection. 

(1.9) The Expansion-Restriction Technique. This is best illustrated with the 
following example. Suppose one needed to calculate something about H*(Z4) - 

say, about the map Sq': H2 -* H3. A technique often used is to restrict to sub- 
groups whose cohomology is better known (in this case Z2 C Z4 is the only choice) 
and to use naturality. Unfortunately, when these subgroups fail to detect coho- 
mology, there is some ambiguity in the answer (in our case, for example, knowing 
Res(Sql (x)) = Sq'(Res(x)) = Sq'(a2) = 0 does not determine Sq'(x) itself). 

Yet we observe two key properties of the dihedral group D8 D Z4: the restriction 
map H* (Dg) - H* (Z4) is onto, and the two elementary subgroups Z2 < Dg detect 
its cohomology. 

Thus, for example, H* (D8) = F2 [z, y, x]/zy, and there is a choice of the two- 
dimensional class x whose restrictions to each H* (Z2) = F2 [a, b] may be written 
a(a + b) in a suitable basis (b = Res(z + y), and a E H1(Z2) could be either of 
the other two generators). Hence Res(Sq1(x)) = Sq1(Res(x)) = a(a + b) b = 

Res(x. (z + y)); because of detection, Sql (x) = x (z + y). Since x restricts to the 
generator t of H2(Z4), we have Sq'(x) = Res(x. (z + y)) = 0 (since Res(z) = 

Res(y) E H' (Z4)), and so the question about Z4 is answered. 
Similar techniques were employed for the groups r4c3 and r4d. We found ex- 

tensions 
l __,G Z24 U 1 

11 U U 
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with the same two key properties: restriction from G to G is onto (this is observed 
by comparing spectral sequences) and H* (G) is detected by (maximal) subgroups 
whose cohomology is known. (Detection is checked by showing that the ideals 
(L) E H*(G), for the various L E H1(G), meet in zero. We needed to check first 
that the image of (L) in Eoo was no bigger than L Eoo. Macaulay does it all.) 

Specifically, the extensions corresponded to cocycles q = (ql, q2) with qi E 
H2 (Z4): for the two groups G we used respectively 

q = (X2 +y2+xz+u2y2 + Z2 +yz+Yu) 

and 

q= (y2 +xz+yYu, 2 +xz+yz+xu). 

In each case, G itself is the subgroup Ker(u) < G. Detection in the first case is by 
3 groups Z4 x D8 (namely Ker(x), Ker(z), and Ker(x + z)) and one Z2 X (Z4 7 Z4) 
(= ker(u + z + y)). In the second case, we used three subgroups Z4 x Z2 and one 

As in the dihedral example and the case r7a3, we define elements &i E H*(G) 
by giving their restrictions to the four good subgroups, then calculate relations 
and so on down there. This gives H*(G) unambiguously, and we simply have 
H*(G) _ H*(G)/(u) (see [14]). 

We also used this technique to verify some relations in r3c2, and to remove an 
ambiguity in the action of Sq4 on r5a2 (the amalgamated product D8 o Q8). In 
the latter case, it was easiest to expand to a group (= D8 o D8 o D8) whose order 
was 4 times as large. 

Lacking any evidence to the contrary, we might conjecture that for every group G 
there exists a suitable "expansion" G, so that transfers and Stiefel-Whitney classes 
need never be used. Certainly, as a test, one might consider the groups herein 
whose Steenrod-algebra action is not completely resolved. 

(1.10) The Multiplicative Extension Problenm. For most groups, we arrive after 
(1.8) at the conclusion that H* (G) is the module over the ring H* (G) [Ti, .I. . , TT] on 
1 E H* (G) and some transfers ai = Cor(ai). Naturally, it is not a free module, but 
one can argue that all relations correspond to relations in Eoo. Macaulay provides 
these: finitely many syzygies E pi oi = 0 with pi E H* (G) and all ai in a "colunm" 
EP *. We need only calculate S Pi Cor(ai) E H* (G); the answer will represent an 
element in EP+1,* (which is usually EO,* = H* (G)/ relations). When all ci are 
transferred from a single subgoup, this is just Cor(Z Res(pi) . ai). Here we inflate 
our knowledge of the restriction map H*(G/ZG) --+ H*(M/ZG) to calculate the 
term to be transferred; the result usually lands in inf(H* (M/ZG)) too, so we may 
inflate knowledge of the transfer map as well. Exceptional cases were easily handled 
by ad-hoc reasoning. 

There remains the transformation of H* (G) from an H* (G)-module to an al- 
gebra: we need to calculate products aiarj as elements in the module. Again, we 
use the formula oaoij = ai. Cor(aj) = Cor(Res(ai) . aj). We find it helpful first to 
express H* (M) as a module over H* (G) so that Cor may be computed. (This task 
is made easier by our unambiguous description of each generator of H*(G).) 

(1.11) The Steenrod Algebra SW. Since we rely frequently on the action of .v on 
cohomology rings, we compute its action on the groups of order 32. By virtue of the 
Cartan formula, it is sufficient to calculate its action on generators. The action of 
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.v commutes with inflation, restriction, and transfer, so for most of the generators 
there are no new techniques needed beyond those in (1.10). 

For the Stiefel-Whitney classes Ti we use the Wu formulae giving Sqi(wj(p)) in 
order to see that Sq (T) is always a multiple wi (p) T of the class T. 

The Wu formulae (or the Adem relations) reduce our calculations to a deter- 
mination of w1, W2, and W4 (i.e., Sql(T), Sq2(T), and Sq4(T)). We can calculate 
w1 (p) = w, (det(p)) as the element det(p) E Hom(G, F2) = H' (G). The remaining 
classes, when needed, were calculated by considering their restrictions to subgroups. 
Unfortunately, this left a few ambiguities which we did not feel inclined to resolve. 
(An asterisk in the tables of Section 3 indicates a coefficient of 0 or 1.) 

(1.12) Other Computations. It should be possible to continue from the data given 
to compute other homological data, but we have not done so. Some results may be 
necessary, should one need to calculate the cohomology of still larger groups: we 
have seen it is necessary to know the restriction, inflation, and corestriction maps, 
as well as the action of group automorphisms. 

In addition, one may wish to compute integral homology and cohomology (and, 
too, cohomology with coefficients). We have succeeded in applying the Bockstein 
spectral sequence in a few cases. 

The author is willing to act as a clearinghouse for such data as they accumulate. 

2. Conclusions Drawn from the Data. We use the groups of order 32 
as a "database" on which to test old conjectures and formulate new ones. We 
incidentally verify our calculations by comparing our computed H*(G) to various 
known results. 

In most cases, the reader can probably calculate the necessary data directly from 
the cohomology rings. We have provided the results of those calculations when 
space permitted. The commentary in Section 2 should provide enough guidance to 
understand the tables in Section 3. 

(2.1) Generators and Relations. Each cohomology ring H*(G) may be written 
as a weighted polynomial ring modulo an ideal generated by finitely many homo- 
geneous relations. We give in Section 3 such a presentation for each group of order 
32. In column 1 we give the degrees of the generators, which will always be called z, 
y, x, w,. .. in order. In column 2 we give a minimal set of generators for the ideal 
of relations. From this perspective, the most complicated group is r7a3, which 
requires 9 generators for H*(G), bound by 27 relations. 

The integers in column 1 are invariants of the group, that is, they do not depend 
on the choice of a minimal generating set for H* (G). It is not clear how to interpret 
these invariants in general, although the number of l's is equal to d(G), the rank 
of G/14(G). 

In column 3 we give the action of the Steenrod algebra by giving, for each 
generator x E Hn(G) with n > 1, the images Sqi(x) for 0 < i < n. 

Using these bits of data allows a few checks on our calculations. To verify the 
Cartan formula, we need to check that the ideal of relations is invariant under the 
total squaring operation (a ring homomorphism). This was checked with Macaulay. 
We also checked some Adem relations on the generators (e.g., Sq'Sql = 0 and 
Sq'Sq2 = Sq3) and verified the instability axiom (Sqnx = x2) for elements of 
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degree not a power of 2. When convenient, we also verified that the ideal of relations 
restricted to zero on subgroups and that the Steenrod squares commuted with the 
restriction. 

We observe that H*(G.) w H*(G2) for distinct groups Gi of order 32, except 
for the isomorphisms 

H* (r2i) - H*(Z4 X Z8), 

H*(J'2j2) H*(J'3di) _ H*(r3d2), 

The first two of these are also isomorphisms of modules over the Steenrod algebra. 

(2.2) Poincare' Series. The Poincare series 

PG(t) = E dim H n(G) 
n>O 

is known to be a rational function whose only poles are IGjth roots of unity. Thus, 
we may write PG (t) = NG (t) rl<n(k), where qk is the kth cyclotomic polynomial 
and NG is a polynomial over the integers coprime to all Ok. Column 4 gives the 
Poincare series for each group as one of the twenty series in the accompanying table. 
Here On is the following polynomial of degree n: 

0/3 (t) = 1 + t2 + t3, 

4(t)= 1+t3 _t4, 

V)5(t) = 1 + t2 + t5, 

)6 (t) = 1+t+t2 +t5 +t6. 

These polynomials each occur in only one group. At the other extreme, fully half 
of the groups have series PG = 0-2 or 0-3 

It had previously been suggested that all zeros of PG were roots of unity as well, 
but we see now this is not the case. We do observe that they are all algebraic 
integers when G has order at most 32, although we have no proof that this is true 
for arbitrary groups. 

The order -n(l) of the pole at t = 1 is the Krull dimension of H* (G), which 
is known [9] to be the rank of G; this agrees with the computed data. There 
is no interpretation known to the author of the other invariants-the locations 
and multiplicities of the zeros and poles. We might ask if there is a natural map 
from Aut(G) (or perhaps even Out(G)) to the Galois group of PG. The referee 
kindly pointed out that the Galois group of the polynomial O')n listed above is the 
symmetric group Sn; in view of the known order of the automorphism groups of 
the groups G in question (see [7]) it is thus clear that the image of Aut(G) in the 
Galois group is comparatively small, at least in these cases. 

We remark that one may view the "series" G, (t) = E tn. Hn (G) of modules 
of Aut(G) (or Out(G)) as a finitely generated module over the (Aut(G)-invariant) 



368 DAVID J. RUSIN 

Poincare series occurring for groups of order 32 

Series n1 n2 n3 n4 n5 n6 n8 NG leading coeffs 

2 -1 0 1 -1 122112 
3 -2 0 0 -1 122234 
4 -2 0 0 -1 0 0 -1 5 123445 
5 -2 123456 

6 -3 0 0 -1 0 1 1235811 
7 -3 -1 1246912 
8 -3 -2 1 12571215 
9 -2 0 0 -2 1 1 3 4 4 6 9 

10 -3 0 0 -2 04 1345811 

11 -2 0 0 -1 0 0 -1 46 135667 
12 -2 0 1 -1 135679 
13 -3 0 0 -1 135679 
14 -3 -1 0 -1 03 1 3 5 8 12 17 
15 -3 1 3 6 10 15 21 

16 -4 -1 137132234 
17 -2 0 1 -1 1 0 -1 1 4 9 15 2126 
18 -3 0 1 -1 1 4 9 15 22 31 
19 -4 1 4 10 20 35 56 
20 -5 ___ 15153570126 

subring generated by the Stiefel-Whitney classes of the regular representation, so 
that 

ZG(t) =G (t) .rI Om (k) 

where AG is a "polynomial" with coefficients in the set of modules over Aut(G). 
We have not tried to compute AG or the m(k). For an example, see [5]. 

Observe that PG may be computed either from Eoo or H*(G). Miscalculation 
in the relations of the latter may produce higher syzygies that would affect PG; we 
have checked that instead the proper series is obtained. 

(2.3) Module Structure. It sometimes makes calculations easier if it is possible 
to find a pure polynomial subring D = F2 [U1, . . ., Un] C H* (G) over which H* (G) 
is a "nice" (e.g., finitely generated free) module (for example, it is easier to work 
with 16 r2cI in this way). In almost every case, we find such an algebra D so that 
as D-modules, 

H* (G) = Mo ED Ml ED .. D Mn, 

where each Mi is a finitely-generated free module over F2 [ul,... , ui], but ujMi = 0 
when j > i. For groups of order 32, we either have H* (G) = Mn (that is, H* (G) 
is a Cohen-Macaulay ring) or H*(G) = Mn- ID Mn (that is, depth H*(G) = 
dim H* (G) - 1) except for the group r7a2 (which incidentally only has depth 1). 
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For this odd group, 

H*(G) = F2[Z,XX,S] * (1, w,v, u, t)l(z -u +x w)ED F2[8] * y. 

We have tried to suggest the module decompositions which we found in an econom- 
ical way. In column 5 we give the degrees of the ring generators ui. The module 
Mn is generated by a finite number of classes ai; in colunm 6, we give the degrees 
of these classes. When Mn_1 =, 0, we give in column 7 the degree of the generator 
of the ideal annD(Mn_1) = (un), and the degrees of the generators of Mn-. 

The most complex group in this sense is r5a2, which can only be written as a free 
module over a pure polynomial subring if we use at least 120 module generators. 
The group r4d is also interesting: it allows such a description as a D-module where 
D has a generator of odd degree. 

Of course the integers in these columns are not invariants of G; but one can 
easily recoup the Poincare series from them as a numerical check. 

There has been some speculation regarding the depth of cohomology rings H* (G); 
unfortunately, the table shows there is not much variation in our data. We do 
check that the depth is at least the rank of the center [3]. We do also observe 
that H*(G) is not Cohen-Macaulay for any G with a unique conjugacy class of 
(noncentral!) maximal elementary-abelian subgroups, nor for either G with non- 
isomorphic maximal elementary subgroups (r4a, and r6al). This supports the 
general consensus that depth is related to the placement of elementary-abelian 
subgroups in G. 

(2.4) Ring Structure. The ideal structure of H* (G) (e.g., Spec H* (G)) is known 
to be related to the elementary subgroups as well. In column 8 we give generators of 
the nilpotent radical v0 c H* (G), and in column 9 we write this as an intersection 
of minimal prime ideals. These are precisely the minimal primes which are invariant 
under the action of the Steenrod algebra. Quillen [9] showed that we may associate 
each such prime to a conjugacy class of maximal elementary subgroups E and 
that H* (G)/P is roughly isomorphic to the ring of invariants H* (E)N(E). Among 
groups of order 32, all such rings of invariants will be pure polynomial rings except 
for those in r4a1,r7al, and r7a2. The apparent anomaly in r6a1 results from the 
more precise statement that H*(G) is isogenous to 

lim H* (E) NG(E) 

We have not yet calculated for all G the square roots necessary to obtain (**) 
from H*(G)/Vf. We do observe that in some cases (e.g., r2cI) the algebraic ad- 
junction of square roots adds nilpotent elements, since H*(G)/IV is not integrally 
closed; thus (**) is obtained from H* (G)/Vf only by the adjunction of square roots 
within (**). 

(2.5) Detection. We have seen how useful it is in the calculation of H* (G) to 
have a family of subgroups H < G which detect H* (G). For some groups (called 
essential groups) no such family exists; we let Ess(G) C H* (G) be the ideal of 
essential elements (restricting to zero on all subgroups). This is n(L): L E H1 (G). 
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In column 10, we give for essential groups a minimal set of generators of Ess(G). 
For nonessential groups, we give a minimal list of L E H1 (G) for which n(L) = (0). 
(Thus, the maximal subgroups her(L) detect.) This list is not in general unique; 
even its cardinality may vary. 

Frequently, the subgroups Ker(L) are not essential either, and so the cohomology 
is further detected by proper subgroups of it. We give in column 11 the isomorphism 
types of subgroups in a detecting set which are themselves essential. (The set 
contains no pairs conjugate to or contained in each other, but it is possible that 
the set is not minimal.) We remark that these subgroups are not even unique up 
to conjugacy (e.g., for G = r2Cl). We write Qn for the quaternion group of order 
n, QD for the quasi-dihedral groups, and A.B for a split (noncommuting) product. 

The ideal case is perhaps one in which elementary-abelian subgroups detect. 
This happens if and only if Vf = 0, and so we observe from the table only a few 
such groups: 

Z5, Z3 x D8, Z2 x D16, rJ5a, = D8 o D8, r4al, r4a2, r4bl, D32. 

As with other phenomena, there is expected to be a link between the existence 
of essential elements in H* (G) and the placement of the elementary subgroups 
and their centralizers. For example, it is conjectured that when all involutions are 
central, G is essential. This is verified when IGI = 32. In other direction, it is 
felt that if G is essential, there should conversely be few involutions, with large 
centralizers-e.g., they should all commute with each other (form a subgroup). 
Indeed, this property is held by the essential groups 

r2d, r2f, r2k, r3f, r4d, r7a3 

(and the nonessential groups r2c, r2j, and r4b2). The lone surprise is the group 
r6a2 which is essential but whose involutions do not form a subgroup. It is not 
now clear what would be a reasonable conjecture in this direction. 

(2.6) Further Remarks on the Table. In column 12 we indicate the set of maximal 
elementary-abelian subgroups. The data are taken from [7]. The entries have one 
of the following forms: 

nI: all involutions are central; rank(G) = n. 
nII: the involutions form a noncentral subgroup E whose rank is n. 

nIII: all maximal elementary subgroups E are conjugate, not normal, and 
of rank n. 

nIVm: there exist m maximal elementary subgroups, all normal and of rank 
n. 

nVm1m2...: all maximal elementary subgroups have rank n and lie in conjugacy 
classes of cardinalities mI, M2,. 

nVI: there exist at least two nonisomorphic maximal elementary sub- 
groups; G has rank n. 
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For every maximal elementary subgroup E in a group G of class II or IV, 
[E: E n Z(G)] = 2, and [G: C(E)] = 2 except when G = r4d, r7al, or r7a2, in 
which case E is self-centralizing and G/E is cyclic. In class III, E is self-centralizing 
and [N(E) : E] = 2. Class VI contains only two groups. r4al has two maximal 
elementary subgroups, both normal: E1 of rank 4 and E2 of rank 3, meeting in the 
center (of rank 2). We have G/C(E1) - Z2 acting with a fixed subspace of rank 
2 in Z4, and G/C(E2) Z2 acting faithfully on Z3. The other group in class VI 
is r6al, which has two conjugacy classes of maximal elementary subgroups, E1 of 
rank 2 and E2 of rank 3. In each case [G: N(E)] = 2, [N(E): C(E)] = 2, and 

[E: EnE9] = 2. 
In column 13 we give references to the specific groups in the body of the text, 

and in column 14 we refer to previous published treatments of which we are aware 
of the given groups. (Direct products can of course be readily handled when the 
factors have been discussed in the literature.) 

(2.7) Further Directions. There are several more areas of current research for 
which we hope the attached tables will be of use. 

There has been considerable effort expended in describing a stable decomposition 
of BG = V Xi with indecomposable spectra Xi. As a first step, we would like to 
calculate a decomposition of H* (G) into indecomposable summands over . 

It would be most pleasant if a complete set of generators of cohomology rings 
were easily available. A frequent choice is the set of Stiefel-Whitney classes of 
representations. We have not calculated all the classes for all the representations, 
but it may turn out that among the "lower" classes (Wk(p) where k < deg(p)) we 
will encounter more generators for H* (G). 

Certainly, we know that we will not recover all of H* (G) in this way. A more 
promising possibility arises from the modular representations p: G -) GL (n, F2). 
Do the images of the various maps p* generate H* (G)? Perhaps our expansion- 
restriction technique is best embodied by two conjectures along these lines: let Un 
be the unipotent (= Sylow) subgroup of GL(n, F2) and ask 

CONJECTURE 1. IS H*(Un) detected by its elementary-abelian subgroups? 

CONJECTURE 2. For every 2-group G, is there a (modular) representation p 
G -- Un such that p*: H*(Un) -- H*(G) is onto? 

(Such a p is necessarily injective.) 

3. Appended Data. This last section consists only of the appended tables. 
For each of the 51 groups of order 32 we give various pieces of data in columns. 
The column headings are cryptic reminders of the descriptions given in Section 2. 
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Group Data 

1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 

(5) z2 y,O, y2 
12 
(41) y2 X,I O x2 
112 

(32) z2 XO,x 2; 
1122 y2 W, O w2 

(311) x2 w, O w2 
1112 
(221) y2 W, 0, w2; 
11122 x2 v,O, v2 

(2111) w2 v, O v2 
11112 
(11111) no relations 
11111 

r2a, zy + y2 V, ZV, v2 
11112 
r2a2 x2 + xw + W2 v,,o, o,v 2 

11114 X3 

r2b yx+w2, vOy2v + x2v + w2V, O, v2 

11114 y2x + yx2 

r2cl yxw , yw + yv + xu, w2 
111222 X2 v, O,v2; 

xw, u, yu + xu, u2 

r2Cc2 w,O,w 2; 

11122 yx + x2 v, yv, v2 

r2d y2 W, O, x2w + yv, W2; 

11134 x2, v, O, yxv + x2v, O,v2 

yw, 

w2 

r2e, z2 WI 0, w2; 

11122 y2 +yX V, xv, v2 

r2e2 z2, W,0,w2; 

11124 v2 + yX + X2, V,O,O,O,v 2 

y3 
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1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 
r2f y2 W,0,W2; 
111234 zy + x2, v, z2w + zyw z2v + yu, v2; 

z2y, U,O, 2u + zyu, 0, u2 

yv, 
z4w + v2 

r29 x w, O,z 2w + zyw + y2W ,O w2 
1114 z2y + zy2 

r2h z2 X, 0, x2; 
1122222 y2 W,10,W2; 

zy, V, zv + yv, v2; 

u 21 u, yx + ZV, u2; 

t2 I t, zw + yv, t2 

ut, 
zu, 
yt, 
yu + zt 

r2i z2 X,0,x2; 
1122 y2 W, O w2 

r2il zy, X, zx + yw, X2; 
11222 y2, W,ZW+yw,w 2; 

yx, v,O,v2 
x 2 

r2 i2 z 2 X, 0, x2; 
1122 zy + y2 W, zw, w2 

r2k z2 X, 0, y2x + zw x2; 
1134 zy2 W, 0, zyw + y2w, o, w2 

zx, 

r3a, yx + x2 w, yw, w2 
1112 
r3a2 yx+x2, w,O,y2w+yv+xv,w2; 
11134 2x, V,0,y2v+yxv,0,v2 

y v+yxv+w2, 
xw 

r3a3 yx + x2, w, O, ,O o w2 
1114 y3 

r3b zy + y2 + yX W, O, x2W,O, w2 

1114 Z3 + Z2X 
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1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 
r3C1 zy x, yx + yw, X2; 
11222 y2, O,W2; 

yx, V, zv + yV v2 
z 2w +x 2 

r3c2 zy, x,O,x2' 
112234 z2 W,yx+yw,w 2; 

y3, v,O,O,v2; 

zw, u,O,O,O,u2 

yV, 

WV, 

y 2w + ZV 

r3d, z2 X, 0, x2; 
1122 zy + y2 W, zw, w2 

r3d2 z2 X, 0, x2; 
1122 zy + y2 W,y +ZW, 2 

r3e zy, Xzx + yx x2 
.112234 y2 W, O, w2; 

yx, V,0,WV +yu,v2 

x 2 U,O,Z2u+Wu,0,u2 
zW, 

ZV, 

XW + yV, 

v2 

.. 
_ 

~XV,, 

r3f 2, x,O,x2; 

11234 zy + y2, W, 0, xw + zv, W2; 

ZX, V,0,XV,0,V2 

zW, 

w 2 

r4a, zy, W,zW+yW, 2; 

111222 yx, V, yv + xv, V2; 

. ~~yu, u,xw+zv+zu+xu,u2 

..x2W + Z2V + ZXU + U2 

r4a2 z 2 + ZX, W, xw, W2, 

11122 y2+ yx V, XV, V2 
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1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 

r4a3 Z2 +ZX+X2 WIZW,W2, 
11124 zy+y2 V,O,O,O,V2 

r4b. yx + x2 w, yw, w2, 

11122 Zy VI ZV + yv, V2 
r4b2 y2 +yx+x 2 w,zw+yw,w2; 
111234 y3 v,y2w + ZV, zu, v2; 

zy, u,0,0,0,u2 

yV, 

z2 u + v2 

r4c1 z2 +yx W,ZW+yw,w2; 

1112334 zy, v, yxw + x2w + xu, x2v + zt, v2; 

yx 2 u,zxw+xu,zx2w+y 2u+yt, 
yv, u2; 

zv + xu, t,O, y2t + yxt + x2t, O, t2 

zu, 
x4w + x3u + yxt + v 2 

y2t+u2I 
zx3W + Vu 

r4C2 zy + zx + x2, w,zw+yw, w2; 
111234 zy +2, V, zyw, z2v + zu + yu, v2; 

z2y U,0, z2u + zxu + x2U,0, u2 

yv, 

z2u + zyu + v2 

r4C3 y2 +ZX+X2, w,yw+zv,yu+zt+y2w,w ; 
1113344 z2 + zy + y2 V, zv + yv, zu + yu + yt,v2; 

z3 +z2y, u,,O,O,u2; 

z3 1 t,o,y2t,o,t2 

zW + zV + yV, 

yw + ZVI 

z2v + zyv 

z2u + zyu + z2t + w2, 

zyu+z2t+zyt+V2, 

z2u + zyt + WV 
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1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 

r4d y2 + ZX, W, zw, zyw + zxw + xt + ys, W2 
11133344 zy+zx+x2 v,zw,z2v+zt+zs+xs,v2; 

z2x, u, zw, z2u + yt + Zs, u2; 

z2y, t, 0, Z2t + Zyt, Z2yt + Zy2t, t2; 

zw + yu, S, O, z2S + zxs, Z2Xs + z , 2 

yw + xu, 
zw + xw + yV, 

zw + XV, 

z2w, 

zyw + yxw, 

zyt+zxt+zxs+w2, 

z2t + Z28 + Zys + zxs + V2, 

zxt + z2s + U2 

zxt+zys+yxs+ W, 

yxt + zys + Wu 

r5al yx + zw, V, O, 
11114 y2x + yx2 + Z2W + ZW2 z2v + zyv + y2v+ywv+ 2VI 

z2yv + zy2v + y2WV + yw2v, 
v2 

r5a2 zy+x2 +XW+W2 v,0,O,O,zw3t+yw3t+xw3t+ 
11118 z2y+zy2 2+?X2W+x2 z4t+y4t+x4t+w4t, 

z 4y + zy + X4 W+x x4 z2w3t + y2w3t + x2w3t + 

zw4t + yW4t + XW4t, 

xw5t+yw5t+zw5t+ 

x2w4t + y2W4t + z2W4t, 

Z2w5t + y2W5t + X2w5t + 

zw6t + yW6t + XW6t, V2 

r6a, yx2 W,0,z2W+zxW+x2W+zV,w2. 
11134 zy, v,O,z2v+zxv+yxv+x2v, 

yw, z2XV + y2xv + ZX2V, V2 

z2Xw + zx2w + z2v + w2 

r6a2 yx, W, z4y2 + ywi 0, 0, z4W+yU W2; 

111558 y3 + Z2X + X3I VI XV, Z2VI z2XV, XU, V2; 

z 2y3 U, 0,0,0,z4u + (*)zy3u, 0,0,0, 

xw, U 

yv, 
y2w + Z2v + X2VI 

WV, 

z8y2 + z4yw + y2u + W2, 

X2U + V2 
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1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 

r7a, zy, XIzx, x2; 
11222334 y2 WI ZX, W2; 

yv, V,zx+yx+u,v2; 

yu, u,O, 
yt, z2u+z2t+wu+Xt+wt+ys, 
z3 + zx + yx + zw, u2; 

ZX+yX+ZV, t,z2x+xw, 

ZU, + yx + ZZX2 + yX2 + Z2t + Xt + 
ZS) t2 

z2t+xu+vu+xt+wt, x 

xu+xt+vt, Us+zxS+yWs,S 

x2w + xwv + ut, 

z2x +xw + v2, 
z4X + Z2x2 + X2W + XW2 + U2I 
z2x2 + X2w + zxt + z2s + t2 

r7a2 zy, X, zx + yx, x2; 
11223344 y2, w, ,w2; 

yx, V, x2, z2v + x2z + XV + ZS, v2; 

yw, U, 0, zxw + xU, u2; 

yv, t,xu+zt,z2t+xt+ws, 

yu, zx2w + z3t + X2U t2; 

yt, s,O,z 2s + Xs, zxs,s 2 

xW + zu, 
z2W+W2, 

WV + zt, 

zxW + Wu, 

z2t+wt, 

x3 + ZXV + Z28 + V2I 
vu + xt, 

x2u + zxt + zws + vt, 

x3W+Z 2xt + z2ws + t2I 
zxt + ut, 

x2 w+u2 
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1. Group 2. Ring Relations 3. Total Steenrod 
& Degs. gens. Squares 

r7a3 x2w + v2, x, zx + yx,x ; 
112235568 zy, w, Ox w2; 

y 2 V (*)z2W,U,V2I 

z3 + yx, u, z2x2 + ZU, O,0, 

yw, Zx3w+yr+x2u u2; 

z2w +yv, t, z2x2 + X3 + zt + (*)z2WX, O, O, 

z 2x + xw +v ZVIzx3w + x3v + x2u + x2t + zr, 

w2 + z2w, t2; 
2 S,ZX2w + x2V, X3W + zwt, O, 

zxwt + x28 + z2r + wr, x4V, 

r, O, O, 0, z2xr + x2r + (*)z2wr, 

Yu) ~~~~~~~0, 0, 2 
|JU, r, 0,0,0,r21 

ys, 
Wu, 
z2t + wt + zS, 

x2v + z2u + xu + wt + zS, 

Ws, 
X3W + z2s + vu, 

zxu + z2s + vu + vt + xs, 

zvu + xwt + Vs, 

xvu + zvs + U2, 

x2a + zvs + ut, 

x5'+ zx2t + z2r+ t2I 

v2t + us, 

x3u + ZX2s + xvs + yxr + 
zwr + us + ts, 

wt2 + s2 

r8a, zy?+y 2 x,zx,x 2 
112 r8al Izy+y~2 2ZZ, 2 

r8a2 zy+y2 X,0,Z2X+ZW+yw,x2; 
1134 y3 W, 0, z2w + zyw, 0, w2 

z2w+y2 w+x2 

r8a3 zy + y2 X, 0,0,0,x 2 

114 Z3 
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1. Group 4. Poinc. 5. Polynom 6. Module 7. 2nd Mod. 
Series subring gens. gens. 

(5) 1 2 11 - 

(41) 5 12 11 - 

(32) 5 22 121 - 

(311) 15 112 11 - 

(221) 15 122 121 - 

(2111) 19 1112 11 - 

(11111) 20 11111 1 - 

r2a, 19 1112 11 - 

r2a2 18 114 1221 - 

r2b 18 124 13431 - 

r2c1 16 1122 1001 (1)01 

r2c2 15 122 121 - 

r2d 13 124 11011 (2)011 

r2e1 15 122 121 - 

r2e2 12 24 13431 - 

r2f 13 224 121121 (2)0121 

r29 12 24 13431 - 

r2h 8 222 1221 

r2i_ 5 22 121 - 

r2i1 7 122 101 (1)01 

r212 5 22 121 - 

r2k 3 24 11011 (2)011 

r3al 15 112 11 - 

r3a2 13 124 11011 (2)011 

r3a3 12 14 1221 - 

r3b 12 14 1221 - 

r3cl 7 122 101 (1)01 

r3c2 5 24 12221 - 

r3d1 5 22 121 - 

r3d2 5 22 121 - 

r3e 5 24 12221 - 

r3f 3 14 11011 (1)011 
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1. Group 4. Poinc. 5. Polynom 6. Module 7. 2nd Mod. 
Series subring gens. gens. 

F4a1 16 1122 101 (1)01 

r4a2 15 122 121 - 

r4a3 12 24 13431 

r4b1 15 122 121 - 

r4b2 13 124 11011 (1)0121 

r4c1 14 224 132231 (2)001 

r4c2 13 224 121121 (2)0121 

r4c3 9 44 1344431 - 

r4d 10 344 111222111 (3)023232 

r5a1 18 114 1221 

r5a2 17 48 1,4,9,15, - 

20, 22, 
20, 15, 
9, 4, 1 

r6a, 13 124 11011 (2)011 

r6a2 11 28 134202431 (2)00011 

r7a1 7 248 112211 (4)0101 

r7a2 6 see text see text see text 

r7a3 4 48 112202211 (4)01001 

r8a1 5 12 11 - 

r8a2 3 24 11011 (2)011 

r8a3 2 4 1221 - 

1. Group 8. Nilradical 9. Minimal 10. Essential Ideal 
Prime Ideals or Detecting Maximals 

(5) (z) (z) (z) 

(41) (y) (y) (zy) 

(32) (z,y) (Z,Y) (zy) 
(311) (x) (x) ((Z + y)zyx) 

(221) (y, x) (Y, x) (zyx) I 
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1. Group 8. Nilradical 9. Minimal 10. Essential Ideal 
Prime Ideals or Detecting Maximals 

(2111) (w) (w) (zyx(z + y)(z + X) x 

(y+x)(z+y+x)w) 
(11111) (0) (0) product of all 31 

elements of H1 (G) 

r2a, (0) (y), (y + z) yy+z 

r2a2 (X, W) (X, W) (XW2(z2y + zy2), 

X2(z2y + zy2)2, 

w2(z2y + zy2)2) 

r2b (wx + wy, (x,Iw), y,x,y+x 
xw + xy) (y, W), 

(x+ y, 
X +W) 

r2C ' (x) (x) y, x 

r2c2 (y, x) (y, x) (zyx) 

r2d (Y, w) (y, w) (zyx) 

r2e, (z) (Z, Y), Y,Y+X 

(Z,y + x) 

r2e2 (Z, y, X) (Z, y, X) (zy2, zyX) 

r2f (y x) (y, X) (X3) 

r2s (x) (x z), (x, y), zyz+y 
(XI(,y+ z) 

r2h (Z, y, U, t) (Z, y, U, t) (zt) 

r2i (z, Y) (z, Y) (zy) 

r2j1 (y, X) (y x) Z,y 

r2j2 (Z, y) (Z, y) (zy) 

r2k (z,Ix) (z, x) (zy) 

r3a, (0) (x), (x + y) x,x+y 

r3a2 (x) (x) X, x + y 

r3a3 (y, x) (y, x) (zy2X, Z2y2 z2x2) 

r3b (zy,z (z, Y), z+x,y,z+x+y 
(Z,y + x), 
(z+X,y) 

r3c ' (y) (y) z.y 

I3c2 (Z, y, w, v) (Z, y, w, v) (zv) 

r3d, (Z, Y) (Z, Y) (zy) 
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1. Group 8. Nilradical 9. Minimal 10. Essential Ideal 
Prime Ideals or Detecting Maximals 

r3d2 (Z, Y) (Z, Y) (zy) 

r3e (y,x,v) (z,y,x,v), Z,y 
(y, x, w, v) 

r3f (Z, y, w) (Z, y, w) (zyx) 

r4a, (0) (z, x, u), (y) z, y 

r4a2 (0) (Z, Y), z,z+x 
(z,y+x), 
(z+x,y), 
(z+x, 

._____ _ , y + x) 

r4a3 (z, y, x) (z, y, x) (zyx) 

r4b, (0) (z, x), z,y 

(z,x+Y), 
(y,x) 

r4b2 (y, x) (y, x) z y 

r4c1 (z) (Z,y,u ), y,x,y+x 
(z, x, v) 

r4c2 (y) (y, x), y,y+z 

(y,x+z) 

r4c3 (Z, y,x wIv) (Z, y x w v) (z2x, zyx, zyw, zxw, 
yxw) 

r4d (y, x, w) (y, x, w) (zyx) 

r5a, (0) (y, Z), (y, W), Z, yz+y+X+w 
(x,Iz), 
(x,Iw), 
(z +x, 
y +w), 
(z + y, 
x + w) 

r5a2 (yX + X2, (Z,x,W), Z,y,Z+y+X,Z+y+w, 

zx+x2, (y,x,w), z+y+x+w 

yw+w2, (z+y, 
zW+W 2) y + W,x), 

(z + Y, 
y y+XIw), 
(z + y, 
y+x, 

_____ _______ x+ w) _ _ _ _ _ _ _ 
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1. Group 8. Nilradical 9. Minimal 10. Essential Ideal 
Prime Ideals or Detecting Maximals 

r6al (yx) (y), (z, x, w) z, y 

r6a2 (y, W, (y, X W V), (zy3) 

x2 + XZ, (z + X,y, 

VX + vz) W) 

r7al (y) (y, v +X,U, Z, y,lz+y 

w+x+z 2)1 

(Z, Y) 

r7a2 (y) (y, w, u, t), z,y 
(y, w + z2, 
u + xz, 

t+zv) 

r7a3 (z,y,w,v,u, (y,w,u,t), (Z3 + z2y, Z2W + zyW) 

s) (y,w+z2, 
U + XZ, 

t + zv) 

r8al (0) (y), (y + z) y,y+z 

r8a2 (y) (y) y, y + z 

r8a3 (Z,y ) (Z, y) (Z2 zy) 

1. Group 11. Minimal 12. Elemen. 13. Refs. in 14. Prev. 
Detectors Subgps. this paper Papers 

(5) 1I - - 

(41) - 2I - [12] 

(32) - 2I 2.1 [12] 

(311) - 3I - - 

(221) - 3I - 

(2111) - 4I - 110] 

(11111) - 5I 2.5 [10] 

r2a1 2(14) 4IV2 2.5 [6], [10] 

r2a2 - 3I - 12], [10] 

r2b 3(212) 3IV3 1.8 [10] 

r2c1 14, 212 4II 2.5 - 
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1. Group 11. Minimal 12. Elemen. 13. Refs. in 14. Prev. 
Detectors Subgps. this paper Papers 

r2c2 3I - [121 

r2d - 3II 2.5 [12] 

r2e1 2(212) 3IV2 1.8 [61 

r2e2 - 21 1.8 [2] 

r2f - 3II 1.6, 1.8, 2.5 - 

r29 3(31) 2IV3 1.8 - 

r2h - 3I 1.8 - 

r2i - 2I 2.1 [12] 

___l 31,212 3II 2.5 - 

r212 - 2I 2.1 [12] 

r2k - 2II 2.5 [12] 

r3a, 2(13) 3V22 2.5 [6] 

r3a2 13,Qs X Z2 3111 - [4] 

r3a3 - 2I - [2] 

r3b 2(21), (31) 2V122 1.8 - 

r3C1 13, Z4.Z4 3III - 

r3c2 - 2I 1.8, 1.9 - 

r3d, _ 2I 2.1 [12] 

r3d2 - 2I 1.7, 2.1 [12] 

r3e (12),22 2V12 1.8, - 

r3f - 2II 2.5 [12] 

r4a, 13, 13 4VI 2.3, 2.4, [11] 
2.5, 2.6 

r4a2 4(13) 3IV4 2.5 

r4a3 - 2I - 

r4b, 2(13),(212) 3IV3 - 

r4b2 212, Q8 x Z2 3II 2.5 

r4c1 (3)(21), 3IV2 1.8 
Z4714 

r4c2 22,2(13) 3IV2 - 

r4c3 - 2I 1.8, 1.9 

r4d - 3II 1.6, 1.8, 1.9 - 

r5a_ 6(13) 3IV6 2.5 [10] 



THE COHOMOLOGY OF THE GROUPS OF ORDER 32 385 

1. Group 11. Minimal 12. Elemen. 13. Refs. in 14. PreV. 
Detectors Subgps. this paper Papers 

r5a2 3(Q8 X Z2), 2IV5 1.9 [10] 
3 (2 1 ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

r6a1 13, 2(21) 3VI 2.6 - 

r6a2 2V12 1.8, 2.3 - 

r7a1 2(21),2(13) 3IV2 1.6 - 

r7a2 2(13), QD16 3IV2 2.3 - 

r7a3 - 2II 1.6, 1.8, 2.1 [13] 

r8a1 2(12) 2V44 - [6] 

r8a2 (12), Q16 2III [4], [12] 

r8a3 1I - [2] 
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